A study of pivoting strategies for tough sparse indefinite systems
نویسندگان
چکیده
The performance of a sparse direct solver is dependent upon the pivot sequence that is chosen during the analyse phase. In the case of symmetric indefinite systems, it may be necessary to modify this sequence during the factorization to ensure numerical stability. Delaying pivots can have serious consequences in terms of time as well as the memory and flops required for the factorization and subsequent solves. This study focuses on hard-to-solve sparse symmetric indefinite problems for which standard threshold partial pivoting leads to a large number delayed pivots. We perform a detailed review of pivoting strategies that are aimed at reducing delayed pivots without compromising numerical stability. Extensive numerical experiments are performed on a set of tough problems arising from practical applications.
منابع مشابه
Towards a stable static pivoting strategy for the sequential and parallel solution of sparse symmetric indefinite systems
We consider the direct solution of sparse symmetric indefinite matrices. We develop new pivoting strategies that combine numerical and static pivoting. Furthermore, we propose original approaches that are designed for parallel distributed factorization. We show that our pivoting strategies are numerically robust and that the factorization is significantly faster because of this static/numerical...
متن کاملCompressed threshold pivoting for sparse symmetric indefinite systems
A key technique for controlling numerical stability in sparse direct solvers is threshold partial pivoting. When selecting a pivot, the entire candidate pivot column below the diagonal must be up-to-date and must be scanned. If the factorization is parallelized across a large number of cores, communication latencies can be the dominant computational cost. In this paper, we propose two alternati...
متن کاملStrategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems
We consider ways of implementing preordering and scaling for symmetric systems and show the effect of using this technique with a multifrontal code for sparse symmetric indefinite systems. After having presented a new method for scaling, we propose a way of using an approximation to a symmetric weighted matching to predefine 1×1 and 2×2 pivots prior to the ordering and analysis phase. We also p...
متن کاملThe design and use of a sparse direct solver for skew symmetric matrices
We consider the direct solution of sparse skew symmetric matrices. We see that the pivoting strategies are similar, but simpler, to those used in the factorization of sparse symmetric indefinite matrices, and we briefly describe the algorithms used in a forthcoming direct code based on multifrontal techniques for the factorization of real skew symmetric matrices. We show how this factorization ...
متن کاملReducing the Amount of Pivoting in Symmetric Indefinite Systems
This paper illustrates how the communication due to pivoting in the solution of symmetric indefinite linear systems can be reduced by considering innovative approaches that are different from pivoting strategies implemented in current linear algebra libraries. First a tiled algorithm where pivoting is performed within a tile is described and then an alternative to pivoting is proposed. The latt...
متن کامل